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Abstract: Autoregressive model with exogenous inputs (ARX) is a widely used black-box
type model. The output noise is usually supposed to have the Gaussian distribution with
zero mean value. This model is good algorithmically processed but unbounded support of
the normal distribution can cause problems in some applications. Here the output noise is
assumed to have uniform distribution. The posterior probability density function (pdf) of
this model is described by the system of the inequalities whose number is time increasing.
To obtain recursively feasible estimation of uniform ARX model the approximation of the
exact pdf is required. The algorithmic solution of this problem is presented here.
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1. INTRODUCTION

Recursive estimation (Peterka, 1981) is in the heart of a range adaptive decision-making units
that include predictors, advising and fault-detecting systems as well as adaptive controllers.
Sufficiency of simple, often black-box, locally valid models is the major advantage adaptive
systems. It makes them relatively universal and keeps costs of their implementation low. Au-
toregressive model with exogenous inputs (ARX) is an important representative of this model
class. Its innovations, stochastic unobserved stimulus of the model, are white, zero mean and
have time-invariant variance. Mostly, the innovations are assumed to be normal. It singles
out least squares as the adequate estimation procedure. Light tails of the normal distribution
imply that unbounded support of normal distribution can often be accepted as a reasonable
approximation of reality, which is mostly bounded. In some case, however, this assumption
is unrealistic, e.g. in modelling of transportation systems, or do not fit subsequent processing,
for instance, robust control design. Then, techniques similar to those dealing with unknown-
but-bounded equation errors are used. The paper accepts the assumption that innovations are
bounded but stays within the standard, here Bayesian, estimation setup (Peterka, 1981) by as-
suming their uniform distribution. The posterior probability density function (pdf) is described
and then approximated by a pdf of the same type but having a fixed-dimensional statistic.

2. NOTION AND NOTATION

′ denotes transposition;̊x means the number of entries in a vectorx; I denotes unit matrix;
the subscript in round brackets defines dimensions of the matrix;≡ is equality by definition;
X∗ denotes a set ofX-values;χx(x

∗) is the indicator of a setx∗ at the pointx; f(·|·) de-
notes probability density function (pdf);t labels discrete-time moments,t ∈ t∗ ≡ {1, 2, . . . , };
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dt = (yt, ut) is the data record at timet consisting of an observed system outputyt and of an
optional system inputut; X(t) denotes the sequence(X1, . . . , Xt), X ∈ {d, y, u}. Names of
arguments distinguish respective pdfs. No formal distinction is made between a random vari-
able, its realization and an argument of a pdf. Integrals used are always definite and multivariate
ones. The integration domain coincides with the support of the pdf in its argument.

3. ESTIMATION OF ARX MODEL WITH UNIFORM NOISE

The parameterized model of the system with a single outputyt

f(yt|ut, d(t− 1),Θ) = f(yt|ψt,Θ) ≡ Uyt(ψ
′θ, r) (1)

≡ χyt(−r ≤ yt − ψ′tθ ≤ r)

2r
=
χyt(−r ≤ Ψt[1,−θ′]′ ≤ r)

2r

is the pdf that describes the ARX model with uniform innovations. In it,

ψt is a column regression vector made of past observed datad(t − 1) and the current system
inputut; often, the state in the phase form is considered, i.e.,ψ′t ≡ [u′t, d

′
t−1, . . . , d

′
t−∂, 1]

with the model order∂ ≥ 0,

Ψ′
t ≡ [yt, ψ

′
t] combines the modelled output and regression vector in the single data vector;

for the state in the phase formΨ′
t = [d′t, d

′
t−1, . . . , d

′
t−∂, 1],

θ is a column vector of regression coefficients,

r > 0 is a positive scalar half-width of the range of innovationset ≡ Ψ′
t[1,−θ′]′,

Θ ≡ (θ, r) labels unknown parameters of the model,

Uy(µ, r) is a uniform pdf ofy given by expectationµ and half-widthr > 0,

χx(x
∗) is an indicator function of the setx∗ evaluated at valuex; it equals 1 ifx ∈ x∗ and it is
zero otherwise.

Under natural conditions of control (Peterka, 1981), which assume inputs conditionally inde-
pendent of unknown parametersf(ut|d(t − 1),Θ) = f(ut|d(t − 1)), the likelihood function
assigned to the uniform ARX model has the form

L(d(t),Θ) =
1

rt
χr(r ≥ 0)χΘ(−1tr ≤ Wt[−1, θ′]′ ≤ 1tr), (2)

where1t is the column vector consisting oft units andW ′
t ≡ [Ψ1, . . . ,Ψt]. The matrixWt is

assumed to be known, which requires knowledge of the initial regression vectorψ1. For the
state in the phase form, it is equivalent to the knowledge ofu1, d0, . . . , d−∂+1. The likelihood
form (2) hints the reproducing prior pdf

f(Θ) ∝ 1

rν0
χr(r ≥ r ≥ 0)χΘ(−1ν0r ≤ W0[−1, θ′]′ ≤ 1ν0r), (3)

where∞ > r > 0 is a sure upper bound on the half-widthr andW0 can be interpreted as
storage of data vectors (fictitiously) measured before the timet = 1 andν0 is their number.
The proper prior pdf is obtained for full-rankW0 andν0 ≥ Ψ̊ + 1.
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For the prior pdf (3), the posterior pdf has the same form

f(Θ|d(t)) ∝ 1

rνt
χr(r ≥ r ≥ 0)χΘ(−1νtr ≤ Wt[−1, θ′]′ ≤ 1νtr), with (4)

νt = νt−1 + 1, ν0 ≥ Ψ̊ + 1 is chosen a priori

W ′
t =

[
W ′

t−1,Ψt

]
, full-rankW0 is chosen a priori.

Applicability of the formula (4) is limited as the dimension(νt, Ψ̊) of the matrixWt increases
with the numbert of processed datad(t), which also increases complexity of the convex sup-
port defined by them. This makes us search for an approximate solution, especially when
considering the recursive estimation.

4. APPROXIMATE RECURSIVELY FEASIBLE ESTIMATION

The approximation needed for on line estimation exploitsKullback-Leibler (KL) divergence
D
(
f̃ ||f

)
(Kullback and Leibler, 1951) that measures the proximity of a pair of pdfsf̃ , f acting

on a setX∗. It is defined as follows

D
(
f̃ ||f

)
≡
∫
f̃(X) ln

(
f̃(X)

f(X)

)
dX. (5)

The KL divergence has the following properties of interest

D(f̃ ||f) ≥ 0, D(f̃ ||f) = 0 iff f̃ = f almost everywhere onX∗ (6)

D(f̃ ||f) = ∞ if the set on whichf(x) = 0 andf̃(x) > 0 has non-zero volume.

To obtain approximate, recursively feasible, estimation of the uniform ARX model we have to
approximate the exact posterior pdf by a pdf determined by a statistic whose finite dimension
does not increase with the increasing number of data. Here, an approximation by a convex set
is proposed. This provides a simple description of uncertainties suitable for robust prediction
and control design.

The exact posterior pdf (4) motivates the form of the approximate pdf

f(Θ|d(t− 1)) =
1

rνt−1χr(r ≥ r ≥ 0)χΘ(−1V̊ r ≤ Vt−1[−1, θ′]′ ≤ 1V̊ r)

I(Vt−1, νt−1)
(7)

I(V, ν) ≡
∫ 1

rν
χr(r ≥ r ≥ 0)χΘ(−1V̊ r ≤ V [−1, θ′]′ ≤ 1V̊ r) dΘ. (8)

These pdfs are determined by full-rank matricesVt−1 with a fixed, finite first dimension̊V ≥ Ψ̊.
After Bayesian updating by the data vectorΨt, the (approximate) posterior pdf becomes

f̃(Θ|d(t)) =

χr(r≥r≥0)

rνt−1+1 χΘ

(
−1V̊ +1r ≤ [V ′

t−1,Ψt]
′[−1, θ′]′ ≤ 1V̊ +1r

)
I ([V ′

t−1,Ψt]′, νt−1 + 1)
. (9)

We search for the approximate posterior pdff(Θ|d(t)) in the form (7), witht replacingt − 1,
which minimizes the KL divergenceD(f̃(Θ|d(t)||f(Θ|d(t))). Thus, we apply the projection-
based approximation of the Bayes rule (Andrýsek, 2004).

The KL divergence will be finite iff the support of̃f will be included in the support of the
constructed approximate pdf. This can be easily fulfilled by restrictingV ′

t to be a sub-matrix of
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[V ′
t−1,Ψt]. We adopt this restriction. Then, the constructed pdff(Θ|d(t)) is constant function

of θ on the integration domain in the formula (5) defining the KL divergence. The function opti-

mized over the(V̊ , Ψ̊) sub-matricesVt of the(V̊+1, Ψ̊) matrix
[
V ′

t−1,Ψt

]′
becomesln[I(Vt, νt)]

with νt = νt−1 + 1. For the optimal choice ofVt, we have to inspect dependence ofI(V, ν) on
V . The substitutionx′ = [−1/r, θ′/r] in (8) and a straightforward bounding from above give

I(V, ν) =
∫

(−x1)
ν−Ψ̊−1χx1(x1 ≤ −1/r)χx(−1V̊ ≤ V x ≤ 1V̊ ) dx ≤ V(V )

r̂ν

r̂ ≡ argmin
r
{Θ : r ≥ r ≥ 0,−r1V̊ ≤ V [−1, θ′]′ ≤ r1V̊ } (10)

V(V ) ≡
∫
χx(−1 ≤ V x ≤ 1) dx.

The exact evaluation ofI(V, ν) is hard. Thus, instead of minimizing the KL divergence, which
is its increasing function ofI(V, ν), we minimize the upper bound in (10) over(V̊ , Ψ̊) sub-
matrices of[V ′

t−1,Ψt]
′. The complete argument̂Θ ≡ (θ̂, r̂) ≡ (θ̂(V ), r̂(V )) ≡ Θ̂(V ) of the

minima (10) is found by linear programming (LP). It serves also as a point estimate ofΘ.

In summary, the setV ∗
t of candidates forVt containsVt−1 and iV ≡ Vt−1, i = 1, . . . , V̊ , with ith

row replaced byΨt. The best optionVt minimizes the upper bound (10), i.e.V(Vt)/r̂
νt(Vt) ≤

V(V )/r̂νt(V ), ∀V ∈ V ∗
t . It remains to find how the volumeV(V ) depends onV . It is in detail

described in (Ḱarńy and Pavelkov́a, 2005 - submitted)

5. ALGORITHM

Obtained algorithm is summarized here.

Initial mode
• Select the structure of the ARX model, i.e., structure of data vectorsΨt.
• Select the dimension̊V ≥ Ψ̊ of the statisticV .
• Select lower and upper bounds on the estimated parameters and construct the matrixV0.
• Collect the data up to the moment whenΨt complementVt to its full chosen dimension̊V .
• Fill initial data into the first regression vectorψ1, chooseν0 and sett = 0.

Recursive mode
• Sett = t+ 1, acquire datadt and create the data vectorΨt = [yt, ψ

′
t]
′.

• Setνt = νt−1 + 1.
• Update byΨt the matrixVt−1 to the matrixVt of the same dimension as follows.
If V̊t−1 < V̊ setV ′

t = [V ′
t−1,Ψt]

otherwise
– EvaluateH =

(
V ′

t−1Vt−1

)−0.5

– Compute the vectorF = HΨt, the matrixG = HV ′
t−1 with ith column iG and evaluate

the scalarγ = 1 + F ′F .
– Fori = 1, . . . , V̊ , evaluateai ≡ γ(1− iG′ iG) + ( iG′F )2 and findk such that|ak| ≥ |ai|.
– SetVt = Vt−1 if |ak| ≤ 1 else replacekth row ofVt−1 by Ψ′

t to getVt.
• Preserve the point estimatêΘt ≡ Θ̂t−1 of parametersΘ if Vt = Vt−1 otherwise update it

Θ̂t = arg min
r∈[r,r]

{Θ : −1V̊ r ≤ Vt[−1, θ′]′1V̊ r} (11)

Increase appropriatelyr if the above LP fails.
• Go to the beginning ofRecursive mode while data are available.
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6. ILLUSTRATIVE EXAMPLE

The research reported here has been motivated by practical problems in estimation of urban-
traffic models. This section illustrates basic features of the proposed algorithm on prediction
of real transportation data. In a particular sub-problem, the counts of cars crossing a cross-road
per hour were recorded. To get the required predictor, logarithms of these counts are modelled
by fourth order uniform AR model. Predictions and prediction errors are expressed in original
counts.

The processed data are on Figure 1 together with prediction errors obtained forV̊ = 7×Ψ̊ = 42.
These errors are typical.

Fig. 1: Transportation data Prediction errors,V̊ = 7× Ψ̊ = 42

Typical trajectories of parameter estimatesθ̂ and r̂ for V̊ = 42 are in Figure 2. Character of

Fig. 2: Estimateŝθ of θ for V̊ = 7× Ψ̊ = 42.

these trajectories is similar for tested dimensionsV̊ = 12, 18, 24, 30, 36, 42, 60, 180.

Table 1 containing elementary statistical evaluation complements the overall picture about
properties of the algorithms. It is worth of noticing that the range 11-59% of informative
data. The extension of the storage lengthV̊ essentially ceases to influence the result quality for
V̊ > 24 = 4× Ψ̊.
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Table 1: Elementary sample statistics of estimation;ê ≡ prediction error
storage length̊V 12 24 42 180

mean of̂e 114 100 99 96
minimum of ê -320 -450 -467 -462
maximum ofê 828 773 772 774
standard deviation of̂e 192 190 189 188
ratio of standard deviations of̂e and data 0.74 0.73 0.73 0.73
portion of informative data [ % ] 43 11 18 59
elapsed time [s] 4.2 11.1 22.6 702.4

7. CONCLUSIONS

The paper provides an approximation of the recursive Bayesian estimation of the ARX model
with uniform noise. The proposed algorithm provides description of possible models by a con-
vex support of the (approximate) posterior pdf. It respects hard bounds on all model parameters.

With respect to further research it offers related problems, like structure estimation. Up to now
the model structure was supposed to be known.
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